ХЕДДЕР-АНГЛ-новый.jpg

Neftyanaya Provintsiya 
No.4(28),2021, Part 2
 

Establishment of criteria for creating in-situ combustion front following air injection into oil reservoir

G.V. Aleksandrov, R.Kh. Nizaev, Yu.L. Egorova, A.A. Gizzatullina

DOI: https://doi.org/10.25689/NP.2021.4.375-392

PP.375-392

Download article

Adobe_PDF_Icon.png
 
 

Abstract

The paper presents and summarizes results of reservoir modeling studies aimed to determine geological and reservoir conditions for creating a stable burning front resulting from air injection into heavy and extra-heavy oil accumulations (known as in-situ combustion (ISC) process). A numerical reservoir model was built to determine reservoir depths and oil viscosities at these reservoir depths. Based on the results of calculations, the relationship between the reservoir depth and the oil viscosity in original reservoir conditions corresponding to the conditions of creating a combustion zone in the vicinity of the injection well within three days once air injection was started, has been obtained. Using this analytical dependence, the distinct line based on reservoir depths and original oil viscosities was constructed dividing oil reservoirs into zones with and without oil self-ignition within three days once air injection was started at BHP equal to hydrostatic pressure at the given reservoir depth. Case histories of other ISC projects in which self-ignition of oil was observed reported in the literature are mentioned. To calculate performance of the in-situ combustion-developed fields, reservoir characteristics of the Moco zone reservoir of the Midway-Sunset oil field and the Brea-Olinda field, California, were used as input data. The analysis of the calculation results demonstrated good history matching.

Key words:

heavy or extra-heavy oil accumulation, in-situ combustion, reservoir depth, original oil viscosity, in-situ combustion front, self-ignition of oil, hydrostatic pressure

References

  1. Amelin I.D. Vnutriplastovoe gorenie [In-situ combustion]. Moscow: Nedra Publ., 1980. 230 p. (in Russian)

  2. Antoniadi D.G.,  Garushev A.R., Ishkhanov V.G. Nastolnaya kniga po termicheskim metodam dobychi nefti [Primer on thermal recovery methods]. Krasnodar: Sovetskaya Kuban Publ., 2000.  464 p. (in Russian)

  3. Baibakov N.K., Garushev A.R. Teplovye metody razrabotki neftyanykh mestorozhdenii [Thermal oil recovery methods]. Moscow: Nedra Publ., 1977. 238 p. (in Russian)

  4. Dyakonov D.I. Geotermiya v neftyanoy geologii [Geothermy in petroleum geology]. Moscow: Gostoptekhizdat Publ., 1958. 277 p. (in Russian)

  5. Kleshchev K.A., Shein V.S. Neftyanye i gazovye mestorozhdeniya Rossii: Spravochnik v dvukh knigakh [Russia’s oil and gas fields. Book One – European part of Russia, Book Two – Asian part of Russia)]. Moscow: VNIGNI Publ., 2010. 720 p. (in Russian)

  6. Kotyakhov F.I. Fizika neftyanykh i gazovykh kollektorov [Oil and gas reservoirs’ physics]. Moscow: Nedra Publ., 1977. 287 p. (in Russian)

  7. R.Kh. Nizaev, G.V. Aleksandrov, Yu.L. Yegorova Issledovanie haraktera protekaniya processov fil'tracii v zalezhah vysokovyazkoj i sverhvyazkoj nefti pri zakachke vozduha s pomoshch'yu gidrodinamicheskogo modelirovaniya [Reservoir simulation models used to study fluid filtration processes in heavy and extra-heavy oil fields developed by air injection]. Neftyanaya Provintsiya, No. 1(21), 2020. pp. 109-124. DOI https://doi.org/10.25689/NP.2020.1.109-124 (in Russian)

  8. Pykhachev G.B., Isaev R.G. Podzemnaya gidravlika [Reservoir hydraulics]. Moscow: Nedra Publ., 1973. 359 p. (in Russian)

  9. Rychkovskiy A.A., Volf A.A. Zarubezhnyi opyt provedeniya vnutriplastovogo goreniya na mestorozhdeniyakh s trudnoizvlekaemymi zapasami [International experience of in-situ combustion in fields with unconventional reserves]. Nauka, Tekhnika i Obrazovanie, No. 2(32), 2017. p. 42-45. (in Russian)

  10. Rychkovskiy A.A. Obobshchenie opyta otechestvennykh i zarubezhnykh uchyonykh v oblasti mekhanizma primeneniya vnutriplastovogo goreniya [Best practices of Russian and international scientists in in-situ combustion process]. Nauka, Tekhnika i Obrazovanie, No. 7(25), 2016. pp. 35-38. (in Russian)

  11. Khisamov R.S., Nizaev R.Kh., Aleksandrov G.V., Yegorova Yu.L., Ismagilov R.Kh. Sovershenstvovanie tekhnologii razrabotki mestorozhdenii vysokovyazkoi nefti pri teplovom vozdeistvii [Improvement of thermal recovery technologies for development of heavy oil fields]. Kazan: Ikhlas Publ., 2020. 159 p. (in Russian)

  12. Trebin, G.F., Charygin N.V., Obukhova T.M. Nefti mestorozhdeniy Sovetskogo Soyuza [Oils of Soviet Union’s fields.]. Moscow: Nedra Publ., 1980. 583 p. (in Russian)

  13. Shakhmelikyan M.G., Nwizug-Bee Leyii Kluivert Analiz primeneniya tekhnologii parociklicheskogo metoda intensifikatsii dobychi vyazkkih i vysokovyazkikh neftei [Analysis of the application of technology of the steam cyclic method of intensification of viscous and highly viscous oils production]. Nauka, Tekhnika, Tekhnologii (Politekhnicheskii vestnik) [Polytechnical Bulletin], No. 4, 2018. pp. 217-242. (in Russian)

  14. Shestov I.N., Tyurina I.M., Riyanova A.R. Geotermicheskie usloviya gazoneftevodonosnykh kompleksov Permsko-Bashkirskogo svoda v predelakh Permskogo kraya [Geothermal conditions of gas-, oil, water-bearing complexes of the Permian-Bashkirian anticline on the Perm region territory]. Vestnik Permskogo Universiteta. Geologiya, 2015, Iss. 2 (27). pp. 75-84. (in Russian)

  15. Boman, Karen: Heavy opportunities. Offshore Engineer: The Future of Offshore Energy & Technology, 2017. Available at: https://www.oedigital.com/news/445784-heavy-opportunities. (in English)

  16. Ramos M.A., Brown J.C., Rojas M., Kuyucu O., Flores J.G. Producing Extra‑Heavy Oil from the Orinoco Belt, Cerro Negro Area, Venezuela, Using Bottom‑Drive Progressive Cavity Pumps. SPE Production & Operations 22(2):151-155. DOI:10.2118/97889-PA. May 2007. Available at: https://www.researchgate.net/publication/250089001.

Authors

G.V. Aleksandrov, Junior Research Engineer, Geologic and Reservoir Modeling Laboratory, Reservoir Engineering Department, TatNIPIneft–PJSC TATNEFT

32, Musa Jalil st., Bugulma, 423236, Russian Federation

E-mail: razrcmg@tatnipi.ru

 

R.Kh. Nizaev, Dr.Sc., Professor of Reservoir Engineering at Almetyevsk Oil State Institute, Leading Research Associate of Geologic and Reservoir Modeling Laboratory, Reservoir Engineering Department, TatNIPIneft–PJSC TATNEFT

32, Musa Jalil st., Bugulma, 423236, Russian Federation

E-mail: nizaev@tatnipi.ru

 

Yu.L. Yegorova, Senior Lecturer of Reservoir Engineering Faculty, Almetyevsk Oil State Institute

2, Lenin st., Almetyevsk, 423450, Russian Federation

E-mail: ulaegor@rambler.ru

 

A.A. Gizzatullina, PhD (Phys.-Math.), Senior Lecturer of IT, Mathematics, and Physical Sciences Faculty, Ufa State Oil Technical University

1, Kosmonavtov st., Ufa, 450064, Russian Federation

E-mail: alina.gizzatullina87@mail.ru

For citation:

G.V. Aleksandrov, R.Kh. Nizaev, Yu.L. Egorova, A.A. Gizzatullina Opredelenie kriteriev vozniknovenija fronta vnutriplastovogo gorenija pri zakachke vozduha v neftenosnuju zalezh' [Establishment of criteria for creating in-situ combustion front following air injection into oil reservoir]. Neftyanaya Provintsiya, No. 4(28), Part 2, 2021. pp. 375-392. DOI https://doi.org/10.25689/NP.2021.3.375-392 (in Russian)

 
 
 

   © G.V. Aleksandrov, R.Kh. Nizaev, Yu.L. Egorova, A.A. Gizzatullina, 2021
       This is an open access article under the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/)