Neftyanaya Provintsiya Journal

No.2(14),2018

ON ONE OF THE WAYS OF GEOTHERMAL ENERGY PRODUCTION

Gabdrakhmanova K.F., Izmailova G.R., Larin P.A.

DOI https://doi.org/10.25689/NP.2018.2.122-134

PP.122-134

Download article

Adobe_PDF_Icon.png
 
 

Abstract

This paper reviews the state of geothermal energy sector in the world. Today, geothermal heat generated at geothermal stations is used in many countries as electric or thermal energy. Huge potential of geothermal heat provides prospects for further development of this kind of energy in many industries. This entails the necessity in theoretical studies. One of the ways of geothermal energy production discussed in this paper is heating of liquid in a two-string well. Water is injected into the tubing-casing annulus. When moving downward, water is heated by the casing string walls due to convection and conduction. Heat from the earth depths is transferred to the surrounding rock. Average heat stream is 50 mW/m2 varying from region to region. Heated water goes to the surface via the tubing string. The tubing string should be heat-insulated to minimize heat losses. This paper presents mathematical model of water heating in a wellbore due to conductive transfer of heat from the surrounding rock. Various well depths, rock temperature gradients and rates of flow are discussed. Based on diagrams of outlet liquid temperature vs time, injection rate, and temperature gradient, application of this technology in a certain region has been analyzed. This paper also presents temperature patterns near the wellbore at various time points, which can be used to analyze rock cooling due to conductive transfer of heat to the wellbore. Conclusions have been drawn concerning the possibility of using this method to capture geothermal energy in various regions.

Key words:

heat transfer, geothermal gradient, neutral layer, heat conductivity, temperature pattern

References

 

1. Muhammad U. Design and experimental investigation 590 of a 1 kW organic Rankine cycle system using R245fa as working fluid for low-grade 591 waste heat recovery from steam/ Muhammad U., Imran M., Lee D.H., Park B.S.// Energy Conversion and Management. – 2015. – Vol.103. – p.1089-1100.

2. Hammons T.J. Geothermal power generation worldwide: Global perspective, technology, field experience, and research and development// Electric Power Components and Systems. – 2004. - Vol. 32, p. 529-553.

3. Tchanche B.F. Low-grade heat conversion into power using organic Rankine cycles – A review of various applications / Tchanche B.F., Lambrinos G., Frangoudakis A., Papadakis G.// Renewable and Sustainable Energy Reviews. – 2011. – Vol.15(8). – p. 3963-3979.

4. Dipippo R. Geothermal power plants: principles, applications, case studies and environmental impact / R. Dipippo. - Butterworth-Heinemann, 2008. – 600 p.

5. Franco A. Numerical simulation of geothermal reservoirs for the 601 sustainable design of energy plants: A review/ Franco A., Vaccaro M. // Renewable and Sustainable Energy Reviews. – 2014. – Vol. 30(2). – p. 987-1002.

6. Desai N.B. Process integration of organic Rankine cycle / Desai N.B., Bandyopadhyay S. // Energy. – 2009. – Vol. 34(10). – p.1674-1686.

7. Gola G., Bertini G. and etc. Data integration and conceptual modelling of the Larderello geothermal area, Italy // Energy Procedia. – V.125. – 2017. – p.300-309

8. Meza C. Transforming the Nicaraguan energy mix towards 100% renewable // 2017 International conference on Alternative energy in developing countries and emerging economies 2017 AEDCEE, 25-26 May, Bangkok, Thailand // Energy Procedia. – V.138. – 2017. – p.494-499.

9. Walraven D. Comparison of thermodynamic cycles for 606 power production from lowtemperature geothermal heat sources / Walraven D., Laenen B., D’Haeseleer W. // Energy Conversion and Management. – 2013. – Vol. 66(1). - p. 220–233.

10. Габдрахманова К.Ф., Усманова Ф. К. Прикладные методы решения задач в нефтегазовом деле / К.Ф. Габдрахманова, Ф. К. Усманова. Часть I. Уфа: 2013. - 197с.

11. Ларин П.А. О решении одномерного неоднородного волнового уравнения в конечном виде / П.А. Ларин // Фундаментальные исследования. – 2014. - №9 (часть 10) . – с. 2169-2173.

12. Izmailova G. R. Acoustic wave energy absorption and distributed heat sources upon an acoustic impact on media / Izmailova G. R., Kovaleva L. A., and Nasyrov N. M. // High Temperature, 2016, Vol. 54, № 1, pp. 56–61.

Authors

Gabdrakhmanova K.F., PhD, Senior Lecturer in Informational Technologies, Mathematics and Natural Sciences, Oktyabrsky Branch of Ufa State Petroleum Technical University, Oktyabrsky, Bashkortostan, Russia Email: klara47@mail.ru

Izmailova G.R., PhD, Senior Lecturer in Informational Technologies, Mathematics and Natural Sciences, Oktyabrsky Branch of Ufa State Petroleum Technical University, Oktyabrsky, Bashkortostan,

Larin P.A., Senior Lecturer in Informational Technologies, Mathematics and Natural Sciences, Oktyabrsky Branch of Ufa State Petroleum Technical University, Oktyabrsky, Bashkortostan, Russia Email: Larinpa@mail.ru

For citation:

K.F. Gabdrakhmanova, G.R. Izmailova, P.A. Larin Ob odnom iz sposobov dobychi geotermal'noj jenergii [On one of the ways of geothermal energy production]. Neftyanaya Provintsiya, No. 1(13), 2018. pp. 122-134. https://doi.org/10.25689/NP.2018.2.122-134 (in Russian)